Coupled warm pool dynamics in the Indo-Pacific

Dr Ming Feng

Dr Susan Wijffels

Project leaders: Drs Ming Feng (CSIRO) and Susan Wijffels (WHOI and CSIRO)

Staff and associates

Dr Harry Hendon (BoM)

Dr Je-Yuan (Andy) Hsu (CSIRO staff)


[Music plays and animation waves appear moving up from the bottom of the screen and text appears above: The Centre for Southern Hemisphere Oceans Research]

[Image shows the animation waves moving up the screen and over the text and then the image changes to show Ming Feng talking to the camera and text appears: Ming Feng, CSHOR Project Leader, CSIRO]

Ming Feng: I’m working on a project called Carbon dynamics of the Indo Pacific Warm Pool.

[Image changes to show a group of scientists around a table of charts and in conversation and then the image changes to show Ming Feng talking to the camera]

So, this technology and field experiment carried out by this CSHOR project will better understand how the oceans feeds back to the atmosphere on the intra seasonal time scale which will lead us to better predict the weather and the climate such as El Nino southern oscillation.

[Images move through of Ming Feng walking into the CSHOR building, a group of scientists smiling, Ming Feng talking, a graph showing the Warm Pool and Ming Feng talking to the camera]

After the project we hope that Chinese scientists and Australian scientists will work together to tackle the carbon dynamics of the Warm Pool and understand how the Warm Pool physics will affect the climate in China and Australia and to better forecast our weather systems and climate systems into the future.

[Music plays and the image changes to show animation waves across the bottom of the screen and Qingdao National Laboratory for Marine Science and Technology, CSIRO, UNSW and University of Tasmania logos appear]

Dr Ming Feng introduces the Indo-Pacific coupled warm pool dynamics project

Project objectives

The Indo-Pacific warm pool hosts the largest global centre of deep convection, the dominant source of latent heating and moisture for the global atmosphere. The warm pool enables important coupled climate modes, such as ENSO, IOD, and MJO. These climate modes are likely the most important sources of enhanced weather and climate prediction on the globe.

A new understanding is building of how coupling at high frequencies and small spatial scales can be important for climate modes, even the mean climate.  We aim to advance this frontier through new observations and modelling, grounded in the largescale context of the Indonesian Throughflow and its role as a warm pool connector. In addition, better quantification of upper ocean heat balance of the Indian Ocean and associated ocean transport are important in pinpointing the anthropogenic heat uptakes in the global ocean.

The objectives of the project include:

  1. Obtain new insights into air-sea coupling in the east Indian Ocean warm pool region northwest of Australia in conjunction with the Year of Maritime Continent experiment, using fast ocean profiling platforms (resolving the very near surface temperature) to measure SST continuously as well as the key atmospheric variables such as humidity, air temperature, vector winds and radiation parameters. Such measurements in the region will be unprecedented.
  2. Understand coupled model sensitivities in capturing the scale, strength and atmospheric responses to diurnal warming events, and improve our understanding of the impacts of ENSO and MJO on upper ocean thermal and salinity structures in the warm pool.
  3. Quantify the drivers of the decadal variations of the Indian Ocean heat storage and the poleward heat transport in the Indian Ocean using numerical model outputs, and engage in Indian Ocean Observing System review to design observation programs to monitor the key processes.

Latest news

CSHOR Science Seminar Project Presentation:

PDF CSHOR Coupled Warm Pool Dynamics Update May 2018

Related publications

Benthuysen, J. A., Oliver, E. C. J., Feng, M., & Marshall, A. G. (2018). Extreme Marine Warming Across Tropical Australia During Austral Summer 2015–2016. Journal of Geophysical Research: Oceans, 123(2), 1301-1326. https://doi.org/10.1002/2017JC013326
Feng, M., Zhang, N., Liu, Q., & Wijffels, S. (2018). The Indonesian throughflow, its variability and centennial change. Geoscience Letters, 5(1), 3. https://doi.org/10.1186/s40562-018-0102-2
Zhang, Y., Du, Y., & Feng, M. (2017). Multiple Time Scale Variability of the Sea Surface Salinity Dipole Mode in the Tropical Indian Ocean. Journal of Climate, 31(1), 283-296. https://doi.org/10.1175/JCLI-D-17-0271.1